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Modeling and Vibration Feedback Control of Rotating Tapered 
Composite Thin-Walled Blade 

Jae  Kyung Shim,  Sungsoo  Na*  
Department o f  Mechanical Engineering Korea University Anam-dong, Sungbuk-ku, 

Seoui 136-701, Korea 

This paper addresses the problem of  the modeling and vibration control of  tapered rotating 

blade modeled as thin-walled beams and incorporating damping capabilities. The blade model 

incorporates non-classical features such as anisotropy, transverse shear, secondary warping and 

includes the centrifugal and Coriolis force fields. For  the rotating blade system, a thorough 

validation and assessment of  a number of  non-classical features including the taper charac- 

teristics is accomplished. The damping capabilit ies are provided by a system of  piezoactuators 

bonded or embedded into the structure and spread over the entire span of  the beam. Based on 

the converse piezoelectric effect, the piezoactuators produce a localized strain field in response 

to a voltage and consequently, a change of  the dynamic response characteristics is induced. A 

velocity feedback control law relating the piezoelectrically induced transversal bending moment 

at the beam tip with the appropriately selected kinematical response quantity is used and the 

beneficial effects upon the c losed- loop dynamic characteristics of  the blade are highlighted. 
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Materials 

1. Introduction 

The study of  the eigenvibration response of  

rotating beams is an important prerequisite in the 

design of  helicopter, tilt rotor aircraft, and turbo-  

machinery. An important step toward the rational 

design of  modern rotor blades and propellers 

consists of the development of  analytical models 

that are capable of  accurately predicting their 

dynamic behaviors. Moreover, in order to en- 

hance their dynamic behaviors and avoid vibra- 

t ion-induced fatigue failure, new technologies 

have to be implemented. One of  the ways to 

accomplish such goals consists of  the incorpora- 

tion of  adaptive materials into the host structure, 
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which is able to respond actively to changing 

conditions. In contrast to tradit ional  passive 

structures, in a structure featuring adaptive capa- 

bilities, the natural frequencies, damping, and 

mode shapes can be tuned to avoid structural 

resonance and enhance dynamic response charac- 

teristics. In addition, due to the nature of  intelli- 

gent structures that feature a highly distributed 

networks of sensors and actuators, more encom- 

passing control schemes that are impractical when 

a small number of  actuators are used, would be 

possible to be implemented. For  helicopter and 

tilt rotor aircraft, the incorporation of  adaptive 

materials technology for vibration control could 

result in significant increases in comfort, range, 

life, etc. In this sense, piezoelectric materials are 

excellent candidates for the roles of  sensors and 

actuators. 
In this paper, a study of  the in-plane (lagging) 

and transverse to the plane of  rotation (flapping) 

free vibration of  rotating beams featuring non- 

uniform cross sections is addressed. Then, by 
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incorporating the capabil i ty referred to as in- 

duced strain actuation a control of flapping vi- 

bration is carried out. The damping capabil i ty is 

achieved through the converse piezoelectric effect 

that consists of the generation of  localized strains 

in response to an applied voltage. The induced 

strain field produces, in turn, an adaptive change 

in the dynamic response characteristics of the 

structure. 

Under consideration is a rotating blade which 

is modeled as a thin walled beam of  nonuniform 

cross section. Herein, the blade is considered to be 

tapered both in width and depth. 

Although of  an evident importance, to the best 

of  the author's knowledge, no such studies can be 

found in the specialized literature. To the best of  

the author's knowledge the free bending vibration 

problem of  rotating tapered beams was clone 

within the solid beam model only. Some results 

addressing the issue of  uncontrolled rotating 

blades modeled as solid beam and restricted to 

flapping vibration can be found e.g. in the papers 

by Bazoune et al. (1999), Khulief and Bazoune 

(1992), and J. Park and H. Yoo (1996). In the 

other context, Kim and Yoo (2002) investigated 

the coupling motion between inplane motion and 

bending motion in plate model. The results 

obtained herein constitute a generalization of the 

ones previously obtained in the papers by Na and 

Librescu (1999), Song and Librescu (1997) and 

Librescu et al. (1997). 

2. General Considerations 

In this paper, the case of  straight untwisted 

nonuniform blade rotating with constant angular 

velocity is considered. Figure 1 (a) shows the 

geometric configuration and the typical cross 

-section of  a blade considered here along with the 

associated system of  coordinates. The inertial 

system of  coordinates X - Y - Z  is assumed to be 

attached to the center of  the hub O, and the origin 

of  the rotating axis system x - y - z  is located at the 

blade root at an offset R0 of  the rotation axis fixed 

in space. R0 also denotes the radius of  the hub in 

which the blade is mounted and which rotates 
about its polar  axis through the origin O. By i, j ,  

o z , _  q) 
, • t I . . - . ~  

;: Ro ~' L - ~  

Fig. 1 (a) Rotating blade and coordinates used 

Fig. 1 (b) Distribution of the piezoactutor 
(thickness ta-~-0.0002m, width sa--0.089m) 

k and I, 3, IL we define the unit vectors 

associated with the coordinate systems x - y - z  and 

X - Y - Z ,  respectively. In addition, a local (sur- 

face) coordinate system s - z - n  associated with the 

beam is considered. 

Within the present work, it is assumed that the 

presetting and sweep angles of  the blade are zero. 

It is further assumed that the rotation takes place 

in the X - Z  plane with the constant angular ve- 

locity ,Q(.QJ----.Qj), the spin axis being along the 

Y-axis.  The structural model corresponds to a 

th in/ thick-wal led beam. In this context the case 

of a single-cell thin-walled beam of  nonuniform 

closed-sections is considered, where the spanwise, 

the z-coordinate  axis coincides with a straight 

unspecified reference axis. It is assumed that the 

piezoactuator layers are distributed over the en- 

tire beam span and that the polarization is in their 

thickness direction. 

The equations of  rotating thin-walled beams 

are based upon the following statements (Song 

and Librescu 1997, Na and Librescu 2000a): 

(i) The original cross-section of  the beam is pres- 

erved ; (ii) the transverse shear effects are taken 

into account;  (iii) the circumferential stress re- 

sultant Nss (i.e., the hoop stress resultant) is 

negligibly small when compared to the remaining 
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ones; (iv) doubly-tapered beam in both the 
horizontal and vertical planes are considered; 
(v) the case of  a bi-convex beam cross-section 
profile is adopted ; and (vi) both the materials of  
the host structure and of  the piezoactuators ex- 
hibit transversely-isotropic properties, the surface 
of  isotropy being parallel at each point to the 

mid-surface of  the beam. 
By virtue of  the assumption (iv), the following 

linear distribution of  the chord c(r/) and height 
b(r/) of  the mid-line cross-section profiles along 
the wing span (Librescu et al., 1994), is consi- 

dered. 

{c(o) c~ 
b(~l) }=[l--~}(l--a)]lb.} (l) 

Herein o=-Cr/Cn(-br/bn) denotes the taper 
ratio, #=z/L is the dimensionless spanwise co- 
ordinate ( r /~[0,  i ] ) ,  where L denotes the wing 
semi-span, c (r/) and b (r/) denote the local wing 
chord and height, respectively, while subscripts R 
and T identify the wing characteristics at the root 
and tip cross-sections, respectively. Moreover, the 
radius of  curvature of  the circular arc associated 
with the midline contour at section r /a long the 

wing span is expressed as 

R(,~) =[l-v(l-a)]R,, (2) 

As the result of  the transversely isotropic prop- 
erty of  both the piezoactuators and of  the host 
structure, an exact decoupling of  transverse bend- 
ing (flapping-expressed in terms of  variables v0 
and Ox), chordwise bending (lagging, u0 and 0y), 
twist (O),  and axial (too) motions are induced. 
Each of  kinematic variables u0(z ; t ) ,  v0(z ; t ) ,  
W0(Z; t), Ox(z; t), Oy(z; t), and O ( z ;  t) rep- 
resent three translations in the x, y, and z direc- 
tion and three rotations about the x- ,  y - ,  and z -  
axis, respectively. For the problem studied herein, 
only flapping and lagging motions will be consi- 
dered. However, since secondary warping induces 
transverse bending, this effect will also be in- 
corporated. Finally, it is assumed that the electric 
field vector E~ is represented in terms of  its 
component E3 in the n-direction only. 

3. The Dynamic Equations of Adaptive 
Rotating Cantilevered Beams 

Hamilton's variational principle is applied in 
order to obtain the equations of  motion of  ad- 
aptive rotating beams and the associated boun- 
dary conditions. By virtue of  this principle, of  all 
displacements vt=v~(x, y, z; t) that satisfy the 
boundary conditions (BCs) vt=t~t over ,Q and 
also fulfill the condition a v ; = 0  at t = to and t =  
h, where to and tt are two arbitrary instants of  
time, the actual ones fulfill the following varia- 
tional equation. 

13, 

where 

K = l  f o(R.R)dr (4) 

denotes the kinetic energy, dr(=--dndsdz) deno- 
tes the differential volume element, g~(--aon~) 
denote the prescribed components of  the stress 
vector on a surface element of  the undeformed 
body characterized by the outward normal com- 
ponents n~, H~ denote the components of  the 
body forces, .O denotes the external area of  the 
body over which the stresses are prescribed, p 
denotes the mass density, an overtilde sign identi- 
fies a prescribed quantity, and a denotes the varia- 
tion operator. In order to evaluate the quantities 
entering the energy functional, the position vector 
R(-- -R(x,  y, z ;  t)) of  a deformed point of the 

beam is defined as:  

R = R 0 + r + , ~  (5) 

In Eq. (5), r(--xi+yj+ak) defines the 
undeformed position of  a point measured in the 
beam coordinate system and ,d ( - -  ui  + vj + wk) 
denotes the displacement vectors of  the points of  
the blade, while R0=Rok. We will also make use 
of  the equations expressing the time derivatives of 
unit vectors, namely (|, ~, i~)= (--.Qk, 0, _oi), 
and the expressions of  components R~ of  the 
position vector of  a deformed point of  the blade, 
as well as those of  velocity Vt and acceleration a;  
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components. Their distribution throughout the 
beam is (Song and Librescu 1997; Na and Li- 
brescu 2000a) 

V~ = ft + (Ro+ z +  to) .Q (6) 

V~=O (7) 

Vs=w- (x+u)~2 (8) 
and 

ax = / i  + 2 t0~2-- (x + u) ~ O2 (9) 

az=Y (10) 

a s= /b - -2u~2  - (Ro+z+to)~2 2 (11) 

respectively. In Eqs. (6)-(11),  as well as in the 
forthcoming ones, the terms overscored by a sin- 
gle and double bars identify the Coriolis and 
centrifugal acceleration terms, respectively. In 

addition, u, v and to denote the components of  
the three-dimensional displacement vector 
defined in terms of  one-dimensional generalized 
displacement, which can be expressed as 

u ( x . y , z ; t ) = u o ( z ; t ) - - y O ( z ; t )  (12) 

v(x,  y, z ; t ) = v , ( z ; t ) + x O ( z ; t )  (13) 

w(n, s, z; t)=u~(z; t) 

+ x(s) O,(z ; t) + y(s) Ox(z ; t) 
-F . ( s )  O'(z ; t) 

(14) 
+n [-~s O,(z ; t) 

dx -a(s )O' (z ; t ) ]  +-~-Ox(z; t) 

In Eqs. (12) and (14) the terms overscored by 
one and two solid lines belong to the flapping and 
lagging motions, respectively, where primes de- 
note differentiation with respect to the longi- 
tudinal z-coordinate. The remaining terms in 
these expressions are associated with the axial 
warping and twist motions. 

The first integral in Eq. (3) should be consi- 
dered in the sense 

f (  )dr f ~ f r ~ f . . ,  • =.,o .,k:l.,a~-,, ( . ) d n d s d z  (15) 

where r + p  denotes the total number of  layers, 

( ')  ds denotes the integral around the circum- 

ference of  the mid-line cross section of  the beam. 
and L denotes the span of  the beam. 

4. The Governing System 

The governing equations of  nonuniform rota- 
ting blades can be represented in terms of  dis- 
placement quantities. This can be done by ex- 
pressing the stress-resultants and stress-couples 
in the equations of  motion in terms of  displacem- 
ent variables. These equations that can be found 
in the papers by Song and Librescu (1997), are 
not displayed here. 

It should be stressed, however, that even by 
neglecting Coriolis' effects, for a general type of  
anisotropy of  the layer materials (i.e. of  the host 
structure, of  the actuator patches, or of  both of  
them), the system of  governing equations result in 
a complete coupled form. However, for the type of  
anisotropy considered herein, (i.e. of  transverse 
isotropy) an exact split of  the governing system 
of equations and of  the associated BCs into 
four uncoupled subsystems arises. In the sequence 
considered above, the subsystems of  equations 
govern the coupling between chordwise shear and 
flapwise bending, as well as extension and twist 
motions, respectively. These subsystems of  equa- 
tions are labelled as system (A) and (B), respec- 
tively. 

Since the analysis is confined here to rotating 
blades featuring lagging and flapping motions 
only, the associated governing equations and BCs 
for cantilevered beams are given explicitly as 
follows. Equations involving the coupling chor- 
dwise bending-chordwise shear (i.e. coupling 
(A)) are 

auo: [a.(u~ + o~)]'+a'([P(z) ] u~ }' 
(16) 

-2b~Da,~ + ba_O~ uo - bx~/o=O 

d0. : ( a : 0 ; ) ' - -  a . ( u o ' +  0.) 
(17) 

- I ~ , ( ~ . -  .Oz0, ) = 0  

and the BCs at z = O  are 

u , = 0  (18) 

0y=0 (19) 

and the BCs at z = L  are 

auo : a . ( u , ' +  0y) = 0  (20) 

dO,: a.,O; = J ~ .  (21) 
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Herein the coefficients ao, Io, and bi denote 
stiffness, mass, and structural properties, respec- 
tively, whose expressions are displayed in Ap- 
pendix, while B y  denotes piezoelectrically in- 
duced moment in the lagging direction. The equa- 
tions involving the coupling flapwise shear- 
flapwise bending (i.e. coupling(B)) are 

~Vo: [ass(Vo'+Ox)]'+f2~{[P(z)]vo'}" (22) 
-- bl~)o+py=0 

~0x : ( a ~ 0 / ) ' -  as (vo '+  0x) 
(23) 

- I ~ (  0 ~ -  $220x ) - 2 I ° . Q O = 0  
and the BCs at z = 0  are 

Vo----0 (24) 

0x=O (25) 

and the BCs at z = L  are 

t~Vo : a~(vo" + Ox) = 0  (26) 

t~Ox : aaaOx'=l~lx. (27) 

Herein the coefficients ao, I~, I~ and /71 denote 
stiffness, mass, and structural properties, respec- 
tively, whose expressions are displayed in Ap- 
pendix A, while ~ denotes piezoelectrically 
induced moment in the flapping direction. Elimi- 

nation of au(u~+Oy) and ass(v~+Ox) from 
the group of  equations (16), (17), (20), (22-23), 
and (26) respectively, followed by consideration 
of  Ox=--v~ and 0y=--u~,  results in the non- 
shearable counterpart of  the two groups of  equa- 
tions, (A) and (B). These are as follows. 

Classical counterpart o f  the equation group (A) : 

~uo : (a-uo") "-.Q2{ [P  (z) ] Uo' Y 

+2bl.OWo'-- b1£22 uo + bl~o (28) 

- [ I .  (~o ' -  Q~uo' ) ] ' = o  

and the BCs at z = 0  are 

uo=O (29) 

Uo'=O (30) 

and the BCs at z = L  are 

c~uo: [a. ,uo"] ' -I , , , (~o'-  g22uo' )=O (31) 

aue ' :  a . , u o = ~ y  (32) 

Non-shearable counterpart o f  the equation group 
(B): 

c~vo: [auvo"]"-.Oz{[P(z) ] vo' Y 
(33) 

- [ I ~  (Vo'-  ~22~ ' ) ] ' +  b~o=O 

and the BCs at z = 0  are 

vo=0 (34) 

Vo'=0 (35) 

and the BCs at z = L  are 

aVo: [auvo"]'-l=(~o'-~22vo ')  + P = ~ O = o  (36) 

c~Vo' : assvo=l~x (37) 

In Eqs. (16), (22), (28) and (33) P(z )  is 
obtained as 

p(z) = fLb,(z)  (Ro+ z) dz (38) 

As is readily seen, the coupling between the 
lagging-extension and flapping- twist motions 
induced by the Coriolis effect, occurs also within 
the classical beam model. Consistent with the 
number of  four boundary conditions, the govern- 
ing equations associated with lagging and flap- 
ping are each of  fourth order. This feature is valid 
for both shear-deformable and non-shearable 
rotating beams. It should be remarked that in the 
light of the actuator configuration, the piezo- 
electrically-induced stress-resultant and stress- 
couples are independent on the z-coordinate. As 
a result, in the governing equations their contri- 
bution is immaterial while in the BCs they inter- 
vene as non-homogeneous terms only. This fea- 
ture renders the control to be accomplished via 
the piezoelctrically induced bending moments at 
the beam tip (Librescu et al. 1993, 1997 ; Na and 
Librescu 2000a, 2000b). However, due to the 
shape of  the cross-section beam contour, only the 
control of  flapping motion can be accommodated. 

5. The Control Law 

One of  the possibilities of generating bending 
control moment at the beam tip is via the im- 
plementation into the structure of  piezoactuators 
and the use of  the converse effect featured by 
these devices. As shown (see e.g. Tzou, 1993 ; Li- 
brescu et al. 1993, 1996, 1997), piezoactuators 
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featuring in-plane isotropic properties, spread 
over the entire span of  the beam, bonded sym- 
metrically on the outer and inner faces of  the 
beam but activated out-of-phase, generates a 
bending moment at the beam tip in response to 
the applied electric field. In the previously 
displayed equations, due to the special distributi- 
on of  piezoactuators, it was shown that the 
piezoelectrically induced moment 21~x intervenes 
solely in the BCs associated with the bending 
motion, prescribed at the beam tip and, hence, it 
plays the role of  the boundary moment control. 

The damping nature of  the rotating beam is 
introduced by requiring the applied electric field 
E3 to be related to one of  the mechanical quanti- 
ties characterizing its dynamic response. As a 
result, a number of  control laws can be im- 
plemented. 

Within the adopted feedback control law the 
piezoelectrically induced bending moment Jinx at 
the blade tip, is expressed as 

I~7lx(L) =kvOx(L) (39) 

Herein kv denotes the velocity feedback gain. 

6. Numerical  Illustrations and 

Discussion 

The distribution of  the piezoactuator is dis- 
played in Fig. 1 (b) while the properties of  the 
PZT-4 piezoceramic are: (Berlincourt et al. 
1964). 

ElasticCoefficients (N/m 2) : 

Cn=3.531el  I C12=1.975el I Cla----l.886el 1 
Css=2.921el I C~=6.502e10 

Density (N  secZ/m 4) : p = 1.22824e5 

Piezoelectric Coefficients (N.V/m)  : 

es~=--5.2 eaa=lS.I els=12.7 

For the free vibration problem, it is necessary 
to solve the closed-loop eigenvalue problem. To 
this end, the unknown variables are represented 
in a generic form as 

F (z, t) = F (z) exp (At) (40) 

Use of  the representation of  Eq. (40) in Eqs. 
(16) through (21) associated with lagging mo- 
tion, and in Eqs. (22) through (27), associated 

with the flapping, motion, results in two dif- 
ferential eigenvalue problems in terms of  u0(z) 

and Oy(z) on one hand, and in terms of  v0(z) 
and Ox(z) on the other hand. Because the dif- 
ferential eigenvalue problem does not admit a 
closed-form solution, it is necessary to discretize 
it in the spatial variable. Because this is a non- 
self-adjoint problem, the indicated discretization 
procedure is the Galerkin's method, which to 

expanding u0(z), Vo(Z), Ox(z), and Oy(z) in 
series of  trial functions satisfying all boundary 
conditions, multiplying Eqs. (16), (17), (22) and 
(23) by the same trial functions, in sequence, 
integrating over the structure and obtaining a 
non-symmetric algebraic eigenvalue problem. 
The difficulty with this approach lies in the re- 
quirement that the trial functions satisfy both the 
geometric and the natural boundary conditions. 
The difficulty can be circumvented by using a 
modified Galerkin's method, whereby the discre- 

tization process is carried out directly in the 
extended Hamilton's principle. (Librescu et al. 
1997) In the case kvq=0, the solution of the 
algebraic eigenvalue problem yields the closed- 
loop eigenvalues 

(A~, ~ , ) = a r + i w ~ ,  r = l ,  2, .-., n (41) 

which depend on the feedback control gain kv, 
where Or is a measure of  the damping in the r - th  
mode, while tO,~r is the r - th  frequency of  damped 
oscillations. The damping factor in the r - th  
mode results as 

~r ~ O'r 
(O~r "{- O)2dr) ½ (42) 

Several steps aiming at solving the open/closed 
loop eigenvalue problem are shown in Appendix 
B. 

In Table 1, numerical results obtained by using 
the present modeling method are compared with 
available predictions in literatures, which shows 
the fundamental flapping frequency obtained in 
the context of  Euler-Bernoulli beam model, for 
two extreme values of  the hub ratio ro(=--Ro/L). 
The displayed frequencies have been obtained by 
Hodges (1981) via the asymptotic method, while 
the one by Due t  al. (1994) via the Frobenius and 
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Table 1 Comparison of the natural frequencies in 
flapping vibration 

Duet  al. (1994) 
re Hodges (1981) (Exact) Present 

0 3.51602 3.51602 3.51602 
0 

I 3.51602 3.51602 3.51602 

0 6.4450 6.44954 6.44958 
5 

1 8.93210 8.94036 8.94050 

0 11.1956 11.2023 11.2026 
10 

I 16.5905 16.6064 16.6066 

Fig. 2 
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0 0 . 2  0 4 O .  as 0 8 

O 

Variation of the fundamental dimensionless 
flapping frequency with the taper ratios for 

selected values of the rotational speed .O and 

hub ratio r0 

power series technique. It should be remarked 

that the equations of rotating thin-walled beams 

are formally similar to the ones corresponding to 

a solid beam. The difference these two models 

occurs only in the proper expression of cross- 

sectional stiffness quantities and mass terms. For 

this reason, use of dimensionless parameters in 

which these quantities are absorbed will enable 

one to obtain universal results valid for both solid 

and thin-walled rotating beams. Herein the nor- 

mailized angular velocity ~ and eigenfrequency 

m'~ are defined as (.Q, ml) = ($2, ml) (blL'/a~a)112. 
In Figs. 2-4, there are emphasized the effects of 

the taper parameter a considered in conjunction 

with that of the blade normalized rotational speed 

~O and of the hub ratio r0 on dimensionless 

eigenfrequencies mr. From Figs. 2-4, it becomes 

evident that as the beam taper increases (i.e when 

i • i • i i i 

r , , O • S  

~a ~ 0 . 5  . 
Zl . ; I - ' :  

. , o s + : , . + . . : ~ : :  
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I ° 
Fig, 3 The counterpart of Fig. 2 for the second 

flapping frequency 

7 0  

¢o0 

m 5 0  
3 

4 0  

3 0  

Fig. 4 

• ! , i • ! • r • 

r = 0 . 5  

• , ~ 1 . . t  + 

. , q | l : : r ' "  . • 
o.~....,,..,:!~:...... 

t I I | i | I I I 

0 . 2  0 .4  0 . 6  0 8 

O" 

The counterpart of Fig. 2 for the third 
flapping frequency 

O" decreases), the first natural frequency increases 

whereas the second and the third ones decrease. 

However, in Fig. 3 it becomes apparent that with 

the increase of ,Q and decrease of a there is a 

critical taper ratio for a beam rotating at rela- 

tively high speed for which the decay of the 

natural frequency with the decrease of a stops, 

and a slight change of trend is manifested. A 

general remark emerging from Figs. 2-4 is that 

the stiffening effect due to beam rotation con- 

tributes to the increase of natural frequencies for 

all taper ratios. Moreover, the hub radius has a 

beneficial effect of increasing the eigenfrequen- 

cies, especially at higher rotational speeds where 

the effect appears to be more prominent. 



Modeling and Vibration Feedback Control of  Rotating Tapered Composite Thin- Walled Blade 387 

34 t r ° ~  ~ 312o 

208o 

33 lO4O 
0 2 4 6 S 

o r a l  . 0  rmCl).-", . . - ' ' "  - . . . . . . .  E / G ' -  1 0 0  
[ E / G  - 0  

.... . . . . . . .  ::::::: 1 ' 2 ®  , . , o  . . . . . .  
~ .  "~ ' "  . . . . - -  . . . .*-  . . .  . . . . . . . .  . . - - -= . . . . . . . .  

. . . . . . .  : . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  
3s  ~ . . ~ i n ~ - - ' ~  , ,~ -~ -~ -  . . . . . . . . .  _ . . . . .  ~ ~ i ~= = . ~ - . . ' ~ - ; ~ - - - - - "  

. . . . . . .  . . . . .  _.,: : , : : ,k-: ._=~. - - - . . ~ -  . . . . . . .  

o'0.6 

Fig. 5 Fundamental lagging frequency (dimension- F i g .  7 

less) vs..Q for selected values of the taper 
ratio and hub ratio (classical beam model) 
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Fig. 6 Fundamental flapping and lagging frequen- 
cies vs. rotating speed for selected values of 
the taper ratio (E/G'=IO0, ro=O.I) 
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Fig. g The counterpart of Fig. 6 for the third fre- 
quencies in flapping and lagging 

In Fig. 5 there are depicted the implications of  
the rotational speed considered in conjunction 
with these of  the taper ratios and hub ratios on 
the dimensionless first natural frequency in lag- 
ging. Since the frequencies in lagging are higher 
than their counterparts in flapping, the stiffening 
due to the centrifugal effect is weaker than that 
exerted on flapping frequencies. The same trend 
also emerges from Fig. 6 where the Campbell 
diagrams were completed to also include the effect 
of  the beam taper ratio. Figures 7 and 8 constitute 
the counterparts for the second and third fre- 
quencies in flapping-lagging, of  Fig. 6, where in 
addition the implications of  transverse shear 

flexibility are emphasized. These reveal that : (i) 
the effect of  rotation is much more reduced for the 
second and third flap frequencies than for the first 
one ; (ii) the effects of  o" and of  transverse shear 
are much stronger for the lagging frequencies 
(second and third), than for their flapping fre- 
quencies counterparts. 

As was already mentioned, the shape of  the 
cross-section profile considered in conjunction 
with implementation of  the control methodology 
enables one to control the flapwise motion only. 
With this in mind, Figs. 9- ! I depict the variation 
of  the first three closed-loop eigenfrequencies 
with the dimensionless velocity feedback gain for 
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Piezoelectrically induced damping ~l in 
flapping vs. Kv for two values of the 
rotational speed and taper ratio (r0=0.1 

two values of  the rotational speed ~2, for two 

values of  the taper ratio, and for mass ratio ~ ( =  

Ixx/ blL z) =0.05 and transverse shear I .z(- ass/ L z 
a~) =0.007647. The results reveal the dramatic 

role played by the implementation of  piezo-elec- 

tric actuation upon the enhancement of  eigen- 

frequencies. As concerns the implications of  the 

taper, these are similar to those already con- 

sidered in the case of  the unactivated rotating 
beams. 

In Fig. 12 the variation of the piezoelectrically 

induced damping of  rotating beam for two values 
of  the taper ratio, vs. the velocity feedback gain is 

presented. Whereas the effect of the taper ratio is 

similar to that featured in the case of  non-rotat ing 

beams (Na and Librescu, 1999), the increase of  

the rotational speed yields a decrease of the 

induced damping. This is attributed to the fact 
that the beam stiffened by the centrifugal effect 

that increases with the increase o f / 2 ,  is less prone 

to induce damping as compared to its less stiff 

beam counterpart, i.e. of  that rotating at lower 

values o f / 2 .  

7.  C o n c l u s i o n s  

A dynamic structural model of  rotating beam 

of tapered ( 0 < o r < l )  cross-sections was deve- 
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loped, and the effect of the taper ratio was 
assessed. Moreover, based upon the converse 
piezoelectric effect, a distributed actuator metho- 
dology aimed at controlling the flapping eigen- 
vibration characteristics of rotating cantilevered 
thin-walled beams of nonuniform cross-sections 
was developed. This control is achieved through 
the piezoelectrically-induced flapwise bending 
moments at the tip of the beam. 

The obtained results reveal that via this control 

capability it is possible to tune conveniently the 
eigenfrequencies of the system, and consequently 
to modify in a beneficial and predictable way 
the dynamic response characteristics of the struc- 
ture. 
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Appendix A 

Expressions of  stiffness, structural and mass 
cross-sectional blade characteristics 

jes 
I,,=md,.+md-,, I.~=md=+rnd., /~ = r o d =  

(too, mz)=k~__,~,k,#(')(I, n') dn, b,=mo fds 

an= f (R.x' + g . . e )  ds, 

a ~ = / ( / ' f n y ~ + ~ ' n  / ~) ds, 

a ~ = / ( A ~ 1 2 + A . m  ~) ds, 

a . = / ( A ~ + A ~ I  2) ds 

where l - -dx/ds,  m=--dy/ds 

R,,=A,,- A[2 , t~,,=Dn 
11 

Herein (A~j, Do)=fh(,)C~)(I, n*) dn denote 

shell stretching and bending stiffness quantities, 
respectively, where the integration is performed 
over the thickness of  both the host and 
piezoactuator layers. 

Appendix B 

Several steps aiming at solving the open/closed 
loop eigenvalue problem. 

The method used is based on the extended 
Galerkin's method (see in this respect Librescu et 
al. 1997). As a first step, Hamilton's variational 
principle stating that 

f t ?  ( a T - S V + ~ W )  dt=O' (a) 

d~vo=d0x=0 at h, h 

is used. Herein T and V denote the kinetic and 
strain energies, respectively while d W  is the vir- 

tual work of the nonconservative forces. For the 
flapping motion only, with consideration of  the 
corresponding T,  V, and W i n  Eq. (a), perfor- 
ming the indicated operations and carrying out 
usual steps (Meirovitch 1997), it is possible to 
obtain the boundary value problem. For practical 
reasons, we discretize the boundary value prob- 
lem, which amounts to representing v0 and Ox by 
means of  series of  space dependent trial functions 
multiplied by time dependent generalized coor- 
dinates as 

v0(z, t) = ~/" (z) q~ (t) 
Ox(z. t) = e f t ( z )  qa(t) (b) 

where ~bl=[~bl ~bz "" ~bu] r ~b2=[~N+I ~bN+2 "'" 
02N] r are vectors of  suitable trial functions and 
Ua = [q, qz "'" qN] r q2 = [qs+, qu+2 "'" q ~ ]  r are 

vectors of  generalized coordinates. Introducing 
Eq. (b) in Eq. (a), integrating with respect to 
time, and recognizing that d q = 0  at t=tl, h, we 
obtain the discrete equations of  motion 

Mti( t )  + H i l ( t )  + K q ( t )  = Q ( t )  (c) 

A solution of Eq. (c) can be obtained con- 
veniently by casting it first in state form. To this 
end, we introduce the state vector x----[q r ~lr] r 
and adjoin the identity ti-----~l. Then, the Eq. (c) 
becomes 

x (t) = A x  (t) + B Q ( t )  (d) 

A 0 1 B 0 
where = [ _ M _ X K  _ M _ I H  ], -----[M_~] are 

coefficient matrices. 
For the free vibration problem, the homo- 

geneous solution of  Eq. (d) has the form x = 
Xe  at where X is a constant vector and ,] is a 
constant scalar, both generally complex. With 
this, a standard eigenvalue problem is obtained 

A X = A X  (e) 

which can be solved for the eigenvalues ,It and 
eigenvectors Xr  ( r =  1, 2, ".-). 




